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Autonomous vehicles require optimal path planning algorithms to achieve mission goals
while avoiding obstacles and being robust to uncertainties. The uncertainties arise from
exogenous disturbances, modeling errors, and sensor noise, which can be characterized via
stochastic models. Previous work defined a notion of robustness in a stochastic setting by
using the concept of chance constraints. This requires that mission constraint violation can
occur with a probability less than a prescribed value.

In this paper we describe a novel method for optimal chance constrained path planning
with feedback design. The approach optimizes both the reference trajectory to be followed
and the feedback controller used to reject uncertainty. Our method extends recent results
in constrained control synthesis based on convex optimization to solve control problems
with nonconvex constraints. This extension is essential for path planning problems, which
inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to
chance constrained path planning, the new approach optimizes the feedback gain as well
as the reference trajectory.

The key idea is to couple a fast, nonconvex solver that does not take into account
uncertainty, with existing robust approaches that apply only to convex feasible regions.
By alternating between robust and nonrobust solutions, the new algorithm guarantees
convergence to a global optimum. We apply the new method to an unmanned aircraft and
show simulation results that demonstrate the efficacy of the approach.

I. Introduction

Autonomous vehicles such as Unmanned Air Vehicles (UAVs) need to be able to plan trajectories to a
specified goal that avoid obstacles, and are robust to the uncertainty that arises in the real world. Sources
of uncertainty include uncertain state estimation, disturbances and modeling errors. While much prior
research has focused on robustness to set-bounded uncertainty,1–4 many sources of uncertainty, such as wind
disturbances, are most naturally characterized using stochastic models.5 With stochastic uncertainty, it
is typically not possible to guarantee mission success, defined as reaching the goal region and avoiding all
obstacles, since there is always a small probability that a very large disturbance will occur. We can, however,
define robustness in terms of chance constraints. These require that mission failure occurs with at most a
user-specified probability. Such constraints enable the operator to trade conservatism against performance; a
plan with a very low probability of failure will typically require more fuel, or time, to complete. In this paper
we are concerned with the problem of optimal chance constrained path planning with feedback design. That
is, we would like to design a sequence of feedforward control inputs and a feedback controller that minimizes
cost, such as fuel use, while ensuring that the probability of failure is below the required threshold. We are
concerned with discrete-time linear systems; prior work showed that a UAV operating at a constant altitude
as well as other autonomous vehicles can be approximated as such a system, subject to velocity and turn
rate constraints.6,7 A number of recent articles have addressed parts of this problem, which we summarize
here.

In the path planning (or obstacle avoidance) problem, the feasible region for the system state is almost
always nonconvex. Recent work has addressed the problem of chance constrained planning and control in
nonconvex feasible regions.8–10 This work noted that in stochastic systems, the use of a feedback controller
to reject disturbances is essential; otherwise the uncertainty in the predicted state grows in time without

∗Guidance and Control Analysis Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.

1 of 12

American Institute of Aeronautics and Astronautics



bound. Previous work therefore assumed a feedback controller as well as a feedforward control (or reference
trajectory). However the feedback controller had to be specified ahead of time by hand, rather than being
incorporated into the optimization explicitly. In this paper, we aim to find the optimal feedback controller
as well as the optimal feedforward control.

Feedback design was considered explicitly in the case of control within convex feasible regions by a series
of recent articles.11–15 The approach of Ref. 15 converts chance constraints into set constraints on the state
mean. The problem of optimal feedforward and control law design is then posed as a Second Order Cone
Program (SOCP) and solved using efficient existing techniques.16 The tractability of this approach relies
on the convexity of the feasible region; without this, the resulting optimization is nonlinear and nonconvex.
This means that finding the global optimum is intractable in the general case.

In this paper we extend the work of Ref. 15 to nonconvex feasible regions, that is, to the problem of
robust path planning. The key idea is to couple a fast, nonconvex solver6 that does not take into account
uncertainty, with the convex robust approach of Ref. 15. The intuition here is that, in many cases, the
optimal robust solution is close to the nonrobust solution. We therefore use the fast nonrobust solver to
identify convex regions in which the robust solver should search for a solution to the robust path planning
problem. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence
to a global optimum, while using bounding arguments to ensure that a small subset of the possible convex
regions are explored.

II. Problem Statement

In this paper, we are concerned with the following discrete-time linear plant:

xk+1 = Axk + Bwwk + Buk

yk = Cxk + Dwk. (1)

Here x ∈ �nx is the system state, y ∈ �ny are the observable system outputs, u ∈ �nu are the system
inputs, and w is a noise vector. The noise vector can model disturbances, uncertainty in the system model,
and sensor noise. We assume that w is a Gaussian noise process and that the initial state x0 is a Gaussian
random variable; these two are uncorrelated. We use xk to denote the value of x at time step k, and x′

to denote the transpose of x. We use P (A) to denote the probability of event A and p(x) to denote the
probability distribution function of random variable x. We use x̄ to denote the mean of the random variable
x.

We refer to the plant in the absence of uncertainty as the reference plant, defined as:

xr
k+1 = Axr

k + Bww̄k + Bur
k

yr
k = Cxr

k + Dw̄k. (2)

Note that here, the noise variables have been set to their mean values. We assume that a feedback controller
is used to reject disturbances and drive the system state to the reference value xr. In the path planning
problem we aim to design both a feedback map and the feedforward (or reference) control input ur. We
assume a time-varying linear feedback map such that:

uk = ur
k +

k∑
t=0

Kkt(yt − yr
t ). (3)

In other words, Kkt is the feedback gain that, at time k, multiplies the error between the actual observation
and the reference observation at time t. This controller is non-anticipating, i.e. the control input at time
k does not depend on future observations. A special case of the controller in (3) is the fixed linear gain
feedback uk = ur

k + K(yk − yr
k). The feedback structure is illustrated in Figure 1.

In the path planning problem, we plan over a finite horizon of time instances from k = 0 to k = T . For
notational convenience we ‘lift’ the variables of interest over the time horizon using the following definitions:

X =

⎡
⎢⎢⎢⎢⎣
x0

x1

...
xT

⎤
⎥⎥⎥⎥⎦ X

r =

⎡
⎢⎢⎢⎢⎣
xr

0

xr
1
...

xr
T

⎤
⎥⎥⎥⎥⎦ Y =

⎡
⎢⎢⎢⎢⎣
y0

y1

...
yT

⎤
⎥⎥⎥⎥⎦ Y

r =

⎡
⎢⎢⎢⎢⎣
yr

0

yr
1
...

yr
T

⎤
⎥⎥⎥⎥⎦ U =

⎡
⎢⎢⎢⎢⎣
u0

u1

...
uT

⎤
⎥⎥⎥⎥⎦ U

r =

⎡
⎢⎢⎢⎢⎣
ur

0

ur
1
...

ur
T

⎤
⎥⎥⎥⎥⎦ W =

⎡
⎢⎢⎢⎢⎣

w0

w1

...
wT .

⎤
⎥⎥⎥⎥⎦ (4)
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Figure 1. Control structure for robust path planning problem with stochastic plant. The feedforward control is used to set the
reference state value, while feedback control is used to drive the system state to the reference value in the presence of noise.

The initial state mean and covariance are denoted x̄0 and P0 respectively. The mean and covariance of the
noise sequence W are denoted W̄ and V respectively. The open-loop lifted system dynamics are given by:

X = Gxxx0 + GxuU + GxwW

Y = Gyxx0 + GyuU + GywW, (5)

and the open loop lifted reference dynamics are given by:

X
r = Gxxx̄0 + GxuU

r + GxwW̄

Y
r = Gyxx̄0 + GyuU

r + GywW̄, (6)

where the matrices Gxx, Gxu, Gxw, Gyx, Gyu and Gyw are calculated through repeated application of the
system definition (1). Note that, since the dynamics equations (5) are linear, we have E[X] = X

r and
E[Y] = Y

r. The control structure can be expressed as U = U
r + K(Y − Y

r), where:

K =

⎡
⎢⎢⎢⎢⎣

K00 O · · · O

K10 K11 · · · O
...

...
...

KN0 KN1 · · · KNN

⎤
⎥⎥⎥⎥⎦ . (7)

The lower block triangular structure of K ensures that the controller is non-anticipating. We denote the set
of all possible lower block triangular matrices of the form (7) as K.

We define a feasible region Fx ⊂ �nx·(T+1) in the space of the lifted state X, and a feasible region
Fu ⊂ �nu·(T+1) in the space of the lifted control inputs U, both of which may be nonconvex. We also define
a cost h(Ur, Xr), and assume that h(·) is a piecewise linear function. The path planning problem may now
be stated as:

Definition 1. The chance constrained path planning problem consists of solving the following optimization
problem:

Minimize h(Ur, Xr) over U
r and K

subject to

U
r ∈ Fu

P (X /∈ Fx) ≤ δ

(3), (5), (6), (7)
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III. Summary of existing work

In Section IV we describe a new algorithm for solving the chance constrained path planning problem
(Def. 1). The new algorithm builds from two prior algorithms that solve special cases of the problem in
Def. 1. The first uses Mixed Integer Linear Programming (MILP) to perform path planning for deterministic
linear systems. While this approach can deal with nonconvex feasible regions, it does not take into account
uncertainty. The second uses convex optimization to solve chance constrained feedback control problems for
stochastic linear systems in convex regions. In the following sections we describe the key properties of these
two approaches as they relate to the new nonconvex robust path planning algorithm.

A. Nonrobust Path Planning using MILP

Definition 2. The nonrobust path planning problem consists of solving the following optimization problem:

Minimize h(Ur, Xr) over U
r

subject to

U
r ∈ Fu

X
r ∈ Fx

(6)

Compared with the robust path planning problem (Def. 1), the key difference in Def. 2 is that we are only
concerned with the reference state trajectory. The reference state trajectory is deterministic, that is, it does
not model any sources of uncertainty. This means that in Def. 2, we constrain the reference system state
to remain within the feasible region with certainty. In addition, we no longer design a feedback law, since
feedback is only necessary to drive the actual state to the reference state in the presence of uncertainty.

Ref. 6 shows that, in the case of polygonal feasible regions, the nonrobust path planning problem can be
posed as a Mixed Integer Linear Program. Efficient commercially-available software17 enables fast solution
of the resulting MILP, and guarantees that the globally optimal solution can be found in bounded time. The
key idea behind the approach of Ref. 6 is to encode obstacle avoidance constraints as disjunctions of linear
constraints. These disjunctions can be expressed in a MILP formulation using binary variables and ‘Big-M’
techniques as follows.

A polygonal convex feasible region can be expressed as a conjunction of linear constraints, as illustrated
in Figure 2. The system state at time step k is in the feasible region if and only if:∧

l

a′
klx

r
k ≤ bkl (8)

Using such constraints we can ensure that the system state ends in a defined goal region, and remains in
a convex safe region at all time steps. An arbitrary polygonal non-convex feasible region can be described
by removing convex infeasible regions, or obstacles, from the safe region, as illustrated in Figure 2. The
reference trajectory avoids a given obstacle Oj , illustrated in Figure 2, if and only if:∧

k

∨
l

a′
jlx

r
k ≥ bjl (9)

Then the state is in the nonconvex feasible region if and only if:(∧
j

∧
k

∨
l

a′
jlx

r
k ≥ bjl

) ∧(∧
k

∧
l

a′
klx

r
k ≤ bkl

)
(10)

The challenge is to encode the disjunctions in (9). As shown by Ref. 6, in order to encode avoidance of
obstacle Oj , we introduce binary variables z(j, k, l) ∈ {0, 1} that indicate whether a given constraint l for a
given obstacle Oj is satisfied at a given time step k. The constraint:

a′
jlx

r
t − bjl + Mz(j, k, l) ≥ 0, (11)
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Figure 2. Left: Polygonal convex feasible region Fk for the state at time step k encoded using a conjunction of linear constaints.
The state is in the feasible region if all of the linear constraints are satisfied. Right: Two-dimensional non-convex polygonal feasible
region F . The feasible region is the complement of several convex obstacles (shaded). Each obstacle Oj is defined by the Nj vector
normals aj1, . . . ,ajNj

.

means that z(j, k, l) = 0 implies that constraint l in obstacle Oj is satisfied at time step k. Here M is a large
positive constant. We can now encode constraint (9) in terms of the binary variables as follows:

Nj∑
l=1

z(j, k, l) ≤ Nj − 1 ∀k. (12)

By imposing the constraint (12) for all obstacles, we ensure that all obstacles are avoided at all time steps.
Using further binary variables we can encode nonconvex constraints on the reference control input sequence
U

r. Hence the constraints U
r ∈ Fu and X

r ∈ Fx are encoded as linear constraints involving binary variables.
The dynamics constraints (6) are linear, and the cost function h(Ur, Xr) is linear. Hence the nonrobust path
planning problem (Def. 2) is a MILP, and can be solved to global optimality.

We denote the set of all binary variables z(·) as ZZ. Note that each full assignment to ZZ corresponds to
a convex polygonal region that is a subset of the full nonconvex feasible space. The MILP solution of the
nonrobust path planning problem therefore returns not only the optimal control sequence U

r, but also the
convex region of Fx in which the optimal reference trajectory X

r was found. We use this property in our
new algorithm for robust path planning, described in Section IV. For notational convenience in this paper,
we define the function that solves the nonrobust path planning problem using MILP in Table 1.

Function NonRobustPathPlanning(Fx, Fu) returns h, Ûr,ZZ

1) Express the polygonal nonconvex region Fx in a Mixed Integer Linear format
using (11) and (12).

2) Solve the optimization problem in Def. 2 for Û
r and ZZ using MILP techniques,

as described by Ref. 6.

Table 1. Nonrobust Path Planning using MILP.

B. Robust Control Design using Convex Optimization

Definition 3. The chance constrained convex planning problem consists of solving the following optimiza-
tion problem:

Minimize h(Ur, Xr) over U
r and K

subject to

U
r ∈ Fu

P (X /∈ Fx) ≤ δ

Fu, Fx convex

(3), (5), (6), (7). (13)
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This is identical to the chance constrained path planning problem (Def. 1) except that the feasible sets Fu

and Fx are restricted to being convex. This problem was addressed in a series of recent articles11–14 and
expanded upon in Ref. 15. This work determines the distance of the reference state X

r from the boundaries
of Fx sufficient to ensure that the chance constraint P (X /∈ Fx) ≤ δ is satisfied for any δ ≤ 0.5. This enables
the chance constraint P (X /∈ Fx) ≤ δ to be approximated as a constraint on the X

r, which is not a random
variable. The problem in Def. 3 is then approximated as follows:

Definition 4. The conservative convex planning problem consists of solving the following optimization
problem:

Minimize h(Ur, Xr) over U
r and K

subject to

U
r ∈ Fu

X
r + E(K, δ) ⊂ Fx

Fu, Fx convex

(3), (5), (6), (7), (14)

where E(r, K, δ) is an ellipsoid defined such that:

P
(
X /∈ {Xr + E(r, K, δ)}) ≤ δ. (15)

From (15) and Def. 4 we see that satisfaction of the constraint X
r +E(r, K, δ) ⊂ Fx implies satisfaction of the

chance constraint P (X /∈ Fx) ≤ δ. Hence a feasible solution to the conservative chance constrained convex
planning problem (Def. 4) is a feasible solution to the chance constrained convex planning problem (Def. 3).
Ref. 15 shows that the optimization in Def. 4 can be posed as a Second-Order Cone Program (SOCP). The
details of this are shown in the Appendix. An SOCP is an example of a convex optimization problem,
for which fast algorithms exist with guaranteed convergence to global optimality, with known bounds on
the convergence rate.16 Hence the approximation of the chance constrained convex planning problem can
be solved efficiently. However the ellipsoidal approximation of the chance constraint in Def. 4 introduces
conservatism; this introduces suboptimality in the returned solution. In the general case there exist non-
ellipsoidal sets that satisfy (15) but that yield a lower cost solution to the Def. 4; however the ellipsoid
constraint is required to pose the problem as an SOCP. For notational simplicity, we define the function that
solves the conservative convex planning problem using MILP in Table 2.

Function ConservativeConvexPlanning(Fx, Fu, δ) returns h, Ur, K

1) Express the conservative convex planning problem in Def. 4 as a SOCP using
the approach in the Appendix.

2) Solve the SOCP using existing techniques16 for the optimal solution {U
r, K}

with cost h.

Table 2. Nonrobust Path Planning using MILP.

IV. A New Algorithm for Robust Path Planning

In this paper we extend the work of Ref. 15 to the case of nonconvex feasible regions, in other words
to path planning with obstacles. We use the results of Ref. 15 to approximate the chance constraints in a
conservative manner. This results in the following approximation of the chance constrained path planning
problem:

Definition 5. The conservative path planning problem consists of solving the following optimization prob-
lem:

Minimize h(Ur, Xr) over U
r and K

subject to

U
r ∈ Fu

X
r + E(r, K, δ) ⊂ Fx

(3), (5), (6), (7), (15). (16)
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From the result of Ref. 15, any feasible solution to the conservative path planning problem (Def. 5) is
guaranteed to be a feasible solution to the chance constrained path planning problem (Def. 4). Note that
the only difference between Def. 5 and Def. 4 is that the feasible regions are no longer required to be
convex. The extension of the algorithm proposed by Ref. 15 to the nonconvex case, however, is far from
trivial. The tractability of the conservative convex planning problem (Def. 4) is crucially dependent on the
convexity of the sets Fu and Fx. If either of these are nonconvex, the resulting optimization is nonlinear
and nonconvex. Finding the globally optimal solution of such a problem is intractable in the general case;
existing algorithms provide, in practice, convergence to local optima and hence require good initial guesses
for acceptable performance.

An alternative approach would be to pose the conservative path planning problem as a Mixed Integer
Convex Program (MICP). As in Section III-A, nonconvex polygonal constraints can be encoded using binary
variables. For a given assignment to the binary variables, the constraints are convex, and we therefore have
an MICP. Recent development in solver technology has enabled the solution of such problems, using convex
optimizers to solve convex subproblems, and branch-and-bound to search the nonconvex space for the globally
optimal solution efficiently. For path planning problems of interest, however, the resulting MICPs are too
large to be tractable. We therefore require a new, tractable algorithm for solving the conservative path
planning problem. In this section we describe such an algorithm.

A. Algorithm Description

The key idea behind the new algorithm is to use the approaches of Ref. 6 and Ref. 15 to solve subproblems
of the chance constrained path planning problem in such a manner that we achieve good average-case
performance while guaranteeing convergence to a global optimum in finite time. Since the nonrobust path
planning problem (Def. 2) is a MILP, it can be solved extremely quickly. The conservative convex planning
problem (Def. 4) is significantly slower to solve. Intuitively, however, the optimal robust solution is close to
the optimal nonrobust solution in many cases. In addition, the optimal nonrobust cost is a lower bound on
the optimal robust cost, as we prove in Section IV-B. We therefore use the nonrobust solution to guide the
search for a robust solution in two ways; first, to identify promising regions in which to search for a robust
solution; second, to terminate the search by certifying that the robust solution cannot improve.

The algorithm proceeds as follows. First we solve the nonrobust problem and identify the convex region
in which the optimal solution was found. We then look for a robust solution in this convex feasible region
using the conservative convex planning approach of Ref. 15, described in Section III-B. Using the results
of the robust optimization we remove regions of the nonconvex feasible region in which we know the robust
cost cannot improve. The algorithm then starts another iteration by solving the nonrobust problem in the
diminished nonconvex feasible space. This proceeds until the optimal nonrobust cost is greater than the
best robust cost found so far. Since the optimal nonrobust cost is a lower bound on the robust cost in
the remaining feasible space, we are guaranteed at this point to have found the globally optimal robust
solution. As we demonstrate empirically in Section V, the algorithm finds the globally optimal solution
quickly, and then spends the rest of its running time proving that the solution found is indeed globally
optimal. Pseudocode for the algorithm is given in Table 3. In Section B we prove that the algorithm reaches
a global optimum in finite time.

B. Algorithm Properties

Lemma 1 (Conservative Cost Greater than Nonrobust Cost). Fix all problem parameters includ-
ing the feasible regions Fx and Fu. Denote the cost of the optimal solution to the nonrobust path planning
problem (Def. 2) as ĥ. Denote the cost of the optimal solution to the conservative path planning problem
(Def. 5) as h∗. If no feasible solution exists, the optimal cost is defined as infinity. Then, for any δ ≤ 0.5,

we have ĥ ≤ h∗.

Proof: In the nonrobust path planning problem, the state constraints ensure that the reference state is
inside the feasible region, i.e. X

r ∈ Fx. The conservative path planning problem with δ ≤ 0.5 ensures that
the reference state is at least a certain backoff distance r > 0 from the boundaries of Fx. Hence the state
constraints are strictly tighter in the conservative path planning problem. Other than this, the two problems
are identical. Hence the conservative cost cannot be less than the nonrobust cost; equality occurs when the
state constraints are not tight in the optimal solution. �
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Figure 3. Illustration of new approach to chance constrained path planning. a) First, a nonrobust optimal solution is found, which
does not take into account uncertainty. The algorithm identifies the convex region C in which this solution lies. b) The algorithm
searches for a chance constrained (robust) solution in C (note that a region convex in the lifted vector X appears non-convex in the
figure). No robust solution exists in the C. We remove from the search space a region guaranteed not to contain a feasible robust
solution. c) We search for a nonrobust optimal solution, which this times avoids the narrow corridor. d) A robust feasible solution
does exist in the convex region about the solution in c). This becomes our new incumbent solution. Our next nonrobust solution
has cost greater than our incumbent cost. Since this is a lower bound on the robust cost in the remaining search space, we have
guaranteed optimality.

Lemma 1 says that the conservative cost is never less than the nonrobust cost for a given set of problem
parameters. Following directly from this, we have ĥ = ∞ =⇒ h∗ = ∞ and h∗ < ∞ =⇒ ĥ < ∞. In
other words, if the nonrobust problem is infeasible, then the conservative problem is infeasible, and if the
conservative problem is feasible, then the nonrobust problem is feasible.

Lemma 2 (Pruning). At iteration i, the function PruneSearchSpace does not remove any feasible
solution with cost better than h̃i.

Proof: The function PruneSearchSpace identifies which of the obstacle constraints are tight in the opti-
mal conservative solution, which has cost h̃i. We denote this subset tight constraints. PruneSearchSpace
removes the part of the nonconvex search space for which tight constraints are imposed. Any conservative
path planning problem with tight constraints imposed will have an optimal cost no better than h̃i. Hence
any feasible solution removed by PruneSearchSpace has cost no better than h̃i. �

Theorem 1 (Global Optimality). The algorithm described in Table 3 terminates only if the globally
optimal feasible solution has been found, or no feasible solution exists.

Proof: The algorithm starts with a nonconvex feasible state region Fx. At each iteration i, in Step 9, a
subset Pi of the feasible region is removed, leaving a region F ′

x. From Lemma 2 we know that for each i, h̃i

is the minimum cost in Pi. We set h∗ to h̃i if and only if h̃i < h∗, so h∗ = mini h̃i. Hence at Step 9, we
know that h∗ is the minimum cost feasible solution in the set R :=

⋃i
j=1 Pj . That is, our incumbent cost

is guaranteed to be no worse than any feasible solution in the search space explored so far. The algorithm
terminates at iteration j only if ĥj ≥ h∗. The nonrobust cost ĥj is the optimal nonrobust solution in the
remaining (possibly nonconvex) feasible region F ′

x. From Lemma 1 we know that the optimal conservative
cost in F ′

x is no less than ĥj . Hence any conservative feasible solution in F ′
x has no better cost than h∗. Since

we know h∗ is the minimum of all conservative feasible costs in R, and that R ∪ F ′
x = Fx, at termination

h∗ is the globally optimal cost in Fx. If the globally optimal cost is infinite, then no conservative feasible
solution exists. �
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Function RobustNonconvexMain(Fx, Fu, δ) returns U
r,K,h̄,h∗

1) Initialize h̄ ← +∞, h∗ ← +∞, i ← ∅, globaloptimal ← false, F ′
x ← Fx.

2) Increment i

3) Solve nonrobust problem (Def. 2) on feasible state region F ′
x:

{ĥi, Û
r,ZZ} ←NonrobustPathPlanning(F ′

x, Fu)

4) if ĥi ≥ h∗ then globaloptimal ← true.
5) if ĥi < h̄ then h̄ ← ĥ.
6) Form convex subregion: F̃x ←FormConvexRegion(Fx,ZZ)
7) Solve convex conservative problem:

{h̃i, Ũ
r, K̃} ←ConservativeConvexPlanning(F̃x, Fu, δ)

8) Check for a new incumbent: If h̃i < h∗ then h∗ ← h̃i, U
r ← Ũ

r, K ← K̃

9) Prune search space: F ′
x ←PruneSearchSpace(Ũr, K̃, F̃x, F ′

x,ZZ)

10) if (globaloptimal = false) go to Step 2) else terminate

Table 3. Algorithm for Robust Path Planning.

Function FormConvexRegion(Fx,ZZ) returns F̃x

1) Express nonconvex region Fx in Mixed Integer Linear format as described in
Section A.

2) Assign binary variables in Fx to those in ZZ. Denote the resulting convex
polygonal region F̃x.

Table 4. Function to form convex region from MILP solution.

Lemma 3 (Finite Time). The algorithm described in Table 3 is guaranteed to terminate in bounded time.

Proof: The polygonal nonconvex feasible state region Fx is defined by a disjunction of linear constraints.
At each iteration of RobustNonconvexMain, a region defined by subsets of these linear constraints are
removed from the search space. Since there are a countable number of linear constraints, there are a countable
number of such subsets. If all constraint subsets are removed, the nonrobust problem becomes infeasible and
ĥi = ∞, at which point the algorithm terminates. Hence termination is guaranteed in bounded time. �

V. Simulation Results

The algorithm RobustNonconvexMain was applied to a problem of chance constrained path planning
for a UAV in a 2D environment with uncertain localization acting under wind disturbances. Following the
approach of Ref. 6 we model the aircraft as a double integrator with velocity limits and turn rate constraints.

Function PruneSearchSpace(Ũr, K̃, F̃x, F ′
x,ZZ) returns F ′

x

1) Determine which constraints defining the convex set F̃x are tight in the optimal
solution {Ũ

r, K̃} by finding those constraints with nonzero dual values.
2) Determine the subset of the binary variables ZZ corresponding to these con-

straints. In other words, determine which variables in ZZ were set to zero to
enforce the tight constraints. Denote the vector of these variables ZZsub.

3) Remove from F ′
x the region for which every binary in ZZsub is zero. This is equiv-

alent to adding to the MILP formulation of F ′
x the constraint sum(ZZsub) ≥ 1.

Table 5. Function to remove region from nonconvex search space.
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Denoting the position vector of the UAV as [x y]′, the system is defined as:

x =

⎡
⎢⎢⎢⎣

x

ẋ

y

ẏ

⎤
⎥⎥⎥⎦ u =

[
ẍ

ÿ

]
A =

⎡
⎢⎢⎢⎣

1 Δt 0 0
0 1 0 0
0 0 1 Δt

0 0 0 1

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

0 0
Δt 0
0 0
0 Δt

⎤
⎥⎥⎥⎦ C =

[
1 0 0 0
0 0 1 0

]
D =

[
0 0
0 0

]
Bw = B.

(17)

Initially the UAV is moving North with velocity 0.5m/s. Localization uncertainty is modeled by Gaussian
uncertainty in the initial state x0 while wind disturbances are modeled as Gaussian white process noise. The
statistics of these random variables are given by:

x̄0 =

⎡
⎢⎢⎢⎣

0
0
0

0.5

⎤
⎥⎥⎥⎦ P0 =

⎡
⎢⎢⎢⎣

2.5 × 10−3 0 0 0
0 2.5 × 10−7 0 0
0 0 2.5 × 10−3 0
0 0 0 2.5 × 10−7

⎤
⎥⎥⎥⎦ w̄ =

[
0
0

]
var(w) =

[
4 0
0 1

]
× 10−5.

(18)

The maximum velocity of the UAV is 1.0m/s and the maximum acceleration is 0.25m/s2. These magnitude
constraints were approximated using an 8-sided inscribing polygon as described by Ref. 7. A time horizon
of 10 steps was used, with Δt = 2s. We constrain the system state to be in the goal region at the final time
step, and to avoid all obstacles at all time steps. In the optimizations we minimize fuel use, defined as:

fuel =
N∑

k=0

(
|ẍk| + |ÿk|

)
. (19)

We implemented the RobustNonconvexMain algorithm in Matlab using the YALMIP interface. The
GLPK package was used to solve MILP problems, while SPDT3 was used to solve SOCP problems. The
results shown here were generated on a 2.4GHz Macbook Pro with 4GB of RAM. Figure 4 shows the globally
optimal robust path found by RobustNonconvexMain for two different obstacle maps with a maximum
probability of failure of 0.01. One of these maps is easy for the RobustNonconvexMain algorithm,
because the optimal robust solution is close to the optimal nonrobust solution. The other is hard, because
the optimal nonrobust solution travels through a narrow corridor too risky for a robust solution. This means
that RobustNonconvexMain has to spend more time searching for the optimal robust solution. We use
these examples to illustrate the performance of the algorithm at two extremes.

Figure 5 shows the convergence of RobustNonconvexMain algorithm to the globally optimal solution.
We show the cost of the best robust feasible solution found so far and the best lower bound on the robust
feasible cost. The lower bound is provided by the cost of nonrobust feasible solutions. Global optimality
is proven when the gap between the two values reaches zero. Figure 5 shows that the easy map yields a
provably optimal solution in 2.9mins whereas the hard map requires 118mins. Notice that in both cases the
globally optimal solution is found in a small fraction of the total running time; the majority of time is spent
proving global optimality. This suggests that, in practice, the algorithm can be terminated early without a
substantial deterioration in the returned solution.

The true probability of failure for the globally optimal solutions in Figure 4 was estimated by performing
108 Monte-Carlo simulations. For both the specified maximum probability of failure was 0.01, however the
true value was far below this; the easy map had a probability of failure of 1.0 × 10−6 and the hard map
had a probability of failure of 5.0 × 10−7. This indicates a high level of conservatism, which arises from
the bounding approach used in the ConservativeConvexPlanning method of Ref. 15. Reducing this
conservatism while guaranteeing chance constrained satisfaction is an open problem.

VI. Conclusion

In this paper we presented a novel method for optimal chance constrained path planning with feedback
design. Unlike previous approaches to chance constrained path planning, the new approach optimizes the
feedback gain as well as the reference trajectory. The new approach couples a fast, nonconvex solver that
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Figure 4. Globally optimal robust solutions for easy (left) and hard (right) maps. The reference trajectory is shown in red (thin)
and the distribution of the position is represented using 1000 random samples. Also shown in black (thin) is the optimal nonrobust
solution. In the easy map the optimal robust solution is close to the optimal nonrobust solution, so the algorithm terminates quickly.
in the hard map the narrow corridor at [−1, 5] means that the optimal robust solution is far from the optimal nonrobust solution.
Nevertheless the algorithm eventually finds the optimal robust solution. In this example δ = 0.01. Note that the state constraints are
only imposed at the discretization points; obstacle ‘jumpovers’ can be avoided by standard tightening approaches.18

does not take into account uncertainty, with existing robust approaches that apply only to convex feasible
regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence
to a global optimum. We apply the new method to the problem of robust path planning for a UAV and show
that the algorithm finds the globally optimal robust solution early, before performing additional computation
to prove global optimality.

Appendix

Here we provide details of the Second Order Cone Program that is equivalent to the conservative convex
planning problem (Def. 4). For details of the derivation, refer to Ref. 15. First, define:

Q = K(I − GyuK)−1. (20)

Now define a polygonal feasible region for X as a conjunction of linear constraints:∧
j=1:N

a′
jX ≥ bj . (21)

As shown by Ref. 15, the problem in Def. 4 is equivalent to the Second Order Cone Program given by:

Minimize h(Ur, Xr) over U
r and Q

subject to
U

r ∈ Fu

Q ∈ K
νj(Q) + a′

jX
r ≤ bj ∀j

νj(Q) = r||a′
j [(Gxx + GxuQGyx)FP ) (Gxw + GxuQGyw)FW ]||2 ∀j

X
r = Gxxx̄0 + GxuU

r + GxwW̄, (22)

where FP =
√

P0 and FW =
√

V .
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Figure 5. Convergence of RobustNonconvexMain algorithm to globally optimal solution for easy map (left) and hard map (right).
Shown are the cost of the best robust feasible solution found and the best lower bound on the robust feasible solution. In both cases
the globally optimal solution is found early in the process, with the majority of time being used to prove global optimality.
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